References

6. References#

[1]

Michael P Allen, Dominic J Tildesley, and others. Computer simulation of liquids. 1987.

[2]

Arnaud Blondel and Martin Karplus. New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: elimination of singularities. Journal of computational chemistry, 17(9):1132–1141, 1996.

[3]

Ken Dill and Sarina Bromberg. Molecular driving forces: statistical thermodynamics in biology, chemistry, physics, and nanoscience. Garland Science, 2010.

[4]

Daan Frenkel. Simulations: the dark side. The European Physical Journal Plus, 128(1):10, 2013.

[5]

Daan Frenkel and Berend Smit. Understanding molecular simulation. Elsevier, 1957.

[6]

Michael P Howard, Antonia Statt, and Athanassios Z Panagiotopoulos. Note: smooth torsional potentials for degenerate dihedral angles. The Journal of chemical physics, 2017.

[7]

William L Jorgensen and Julian Tirado-Rives. The opls [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6):1657–1666, 1988.

[8]

David Landau and Kurt Binder. A guide to Monte Carlo simulations in statistical physics. Cambridge university press, 2021.

[9]

Richard LeSar and Daryl C Chrzan. Is computational materials science overrated? Materials Today, 2(3):21–23, 1999.

[10]

Cameron Mackie, Alexander Zech, and Martin Head-Gordon. Effective two-body interactions. The Journal of Physical Chemistry A, 125(35):7750–7758, 2021.

[11]

Glenn J Martyna, Douglas J Tobias, and Michael L Klein. Constant pressure molecular dynamics algorithms. J. chem. Phys, 101(4177):10–1063, 1994.

[12]

Michele Parrinello and Aneesur Rahman. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied physics, 52(12):7182–7190, 1981.

[13]

S Prasad, DL Mobley, E Braun, HB Mayes, JI Monroe, DM Zuckerman, and others. Best practices for foundations in molecular simulations [article v1. 0]. Living Journal of Computational Molecular Science, 1:1–28, 2018.

[14]

Christoph Scherer and Denis Andrienko. Understanding three-body contributions to coarse-grained force fields. Physical Chemistry Chemical Physics, 20(34):22387–22394, 2018.

[15]

M Scott Shell. Thermodynamics and statistical mechanics: an integrated approach. Cambridge University Press, 2015.

[16]

Paulo CT Souza, Riccardo Alessandri, Jonathan Barnoud, Sebastian Thallmair, Ignacio Faustino, Fabian Grünewald, Ilias Patmanidis, Haleh Abdizadeh, Bart MH Bruininks, Tsjerk A Wassenaar, and others. Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature methods, 18(4):382–388, 2021.

[17]

Harry A Stern and Keith G Calkins. On mesh-based ewald methods: optimal parameters for two differentiation schemes. The Journal of chemical physics, 2008.

[18]

Mark E Tuckerman, José Alejandre, Roberto López-Rendón, Andrea L Jochim, and Glenn J Martyna. A liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal–isobaric ensemble. Journal of Physics A: Mathematical and General, 39(19):5629, 2006.

[19]

Mark E Tuckerman and Glenn J Martyna. Understanding modern molecular dynamics: techniques and applications. 2000.

[20]

Jan Zielkiewicz. Structural properties of water: comparison of the spc, spce, tip4p, and tip5p models of water. The Journal of chemical physics, 2005.